400G/200G Module  

200Gb/s QSFP-DD SR8 100m Transceiver

LA-OT-200G-SR8

Up to 28Gbps data rate per channel, 8 duplex channels transmitters and receivers, Integrated 850nm VCSEL array and PD array, Single MPO24 connector receptacle optical interface compliant

200Gb/s QSFP-DD SR8 100m Transceiver

LA-OT-200G-SR8

Up to 28Gbps data rate per channel, 8 duplex channels transmitters and receivers, Integrated 850nm VCSEL array and PD array, Single MPO24 connector receptacle optical interface compliant

Features

● Up to 28Gbps data rate per channel

● 8 duplex channels transmitters and receivers

● Integrated 850nm VCSEL array and PD array

● Single MPO24 connector receptacle optical interface compliant

● Single +3.3V power supply

● DDM function implemented

● Hot-pluggable QSFP-DD form factor

● Maximum link length of 100m on 24 core MPO OM4 (MMF) fiber

● Power dissipation:<4.5W

● International class 1 laser safety certified

● Operating temperature range: 0℃ ~ +70 ℃

● Compliant with ROHS10

Absolute Maximum Ratings

Parameters

Symbol

Unit

Min

Max

 Storage Temperature Range

Ts

-40

85

 Relative Humidity

RH

%

5

95

 Power Supply Voltage

Vcc

V

-0.5

+3.6

Recommended Operating Conditions

Parameters

Symbol

Unit

Min.

Typical

Max

 Operating Case Temperature   Range

Tc

0

 

70

 Power Supply Voltage

Vcc

V

3.14

3.3

3.46

 NRZ Bit Rate(Per channel)

BR

Gbps

 

25.78

Optical Characteristics

Parameters

Symbol

Unit

Min.

Typical

Max

Note

Transmitter(per Lane)

 Signaling Speed per Lane

 

Gbps

25.78125

NRZ

 Center wavelength

 

nm

840

850

860

 

 RMS Spectral Width

SW

nm

 

 

0.6

 

 Average Launch Power per lane

TXPx

dBm

-8.4

 

2.4

 

 Tx OMA per lane

TxOMA

dBm

-6.4

 

3

 

 Difference in power between

 any two lane(OMA)

DPx

dBm

 

 

4

 

 Average launch power of off   transmitter per lane

 

dBm

 

 

-30

 

 Transmitter and Dispersion eye   closure per lane

TDEC

dB

 

 

4.3

 

 Launch power in OMA minus   TDEC

 

dBm

-7.3

 

 

 

 Optical Extinction Ratio

ER

dB

2

 

 

 

 Optical Return Loss Tolerance

ORL

dB

 

 

12

 

 Encircled Flux

FLX

dBm

>86% at 19um

 

<30%at 4.5um

 

 Relative Intensity Noise

RIN

dB/Hz

 

 

RIN

 

Receiver(per Lane)

 Signaling Speed per Lane

 

Gbps

25.78125

NRZ

 Center wavelength

 

nm

840

 

860

 

 Damage Threshold

DT

dBm

3.4

 

 

 

 Average receive power per lane

RXPx

dBm

-10.3

 

2.4

 

 Receiver power (OMA) per lane

RxOMA

dBm

 

 

3

 

 Receiver reflectance

Rfl

dB

 

 

-12

 

 vertical eye closure penalty,     per lane

 

dB

 

 

1.9

 

 Stressed   Receive Sensitivity(OMA) per lane

SRS

dBm

 

 

-5.2

 

 Sensitivity(OMA) per lane

S

dBm

 

 

-10.3

 

 LOS De-Assert

LOSD

dBm

 

 

-12

 

 LOS Assert

LOSA

dBm

-30

 

 

 

 LOS Hysteresis

 

dBm

0.5

 

 



Principle Diagram


Figure 1. Module Principle Diagram


Electric Ports Definition

Parameters

Symbol

Unit

Min.

Typical

Max

Note

 Supply Voltage

VCC

VCC3.3-Tx

VCC3.3-Rx

V

3.14

3.3

3.46

 

 Supply Current

Icc

mA

 

 

1300

 

 PowerConsumptoin

Pc

W

 

 

4.5

 

 Transceiver Power -on Initialize   Time

 

ms

 

 

2000

 

Transmitter

 Single Ended Input   VoltageTolerance

VinT

V

-0.3

 

4.0

 

 Differential Data Input Swing

 

VIN

 

mVp-p

 

300

 

 

1200

 

 AC Common Mode Output   Voltage(RMS)

 

mV

15

 

 

 

 Differential Input Impedance

 

90

100

110

 

Receiver

 Single Ended Input   VoltageTolerance

VoutR

V

 

 

0.2

 

 Differential Data Output Swing

Vout,PP

mVp-p

350

 

850

 

 AC Common Mode Output   Voltage(RMS)

 

mV

 

 

7.5

 

 Differential Output Impedance

 

90

100

110

 

IIC communication

 IIC Clock frequency

 

KHZ

 

100

400

 

 clock stretching

 

us

 

 

500

 

 Data hold time

 

ns

300

 

 


Pin Deion


    Figure 2. Electrical Pin-out Details


Pin

Logic

Symbol

Deion

Note

1

 

GND

Ground

1

2

 CML-I

Tx2n

TransmitterInvertedDataInput

 

3

CML-I

Tx2p

TransmitterNon-InvertedDataInput

 

4

 

GND

Ground

1

5

CML-I

Tx4n

TransmitterInvertedDataInput

 

6

CML-I

Tx4p

TransmitterNon-InvertedDataInput

 

7

 

GND

Ground

1

8

LVTTL-I

ModSelL

ModuleSelect

 

9

LVTTL-I

ResetL

ModuleReset

 

10

 

VccRx

+3.3VPowerSupplyReceiver

2

11

LVCOMS-I/O

SCL

2-WireSerialInterfaceClock

 

12

LVCOMS-I/O

SDA

2-WireSerialInterfaceData

 

13

 

GND

Ground

1

14

CML-0

Rx3p

ReceiverNon-InvertedDataOutput

 

15

CML-0

Rx3n

ReceiverInvertedDataOutput

 

16

 

GND

Ground

1

17

CML-0

Rx1p

ReceiverNon-InvertedDataOutput

 

18

CML-0

Rx1n

ReceiverInvertedDataOutput

 

19

 

GND

Ground

1

20

 

GND

Ground

1

21

CML-0

Rx2n

ReceiverInvertedDataOutput

 

22

CML-0

Rx2p

ReceiverNon-InvertedDataOutput

 

23

 

GND

Ground

1

24

CML-0

Rx4n

ReceiverInvertedDataOutput

 

25

CML-0

Rx4p

ReceiverNon-InvertedDataOutput

 

26

 

GND

Ground

1

27

LVTTL-0

ModPrsL

ModulePresent

 

28

LVTTL-0

IntL

Interrupt

 

29

 

VccTx

+3.3VPowerSupplytransmitter

2

30

 

Vcc1

+3.3VPowerSupply

2

31

LVTTL-I

InitMode

Initialization mode; In legacyQSFPapplications,theIntiModepadisc

alledLPMode

 

32

 

GND

 

Ground

1

33

CML-I

Tx3p

TransmitterNon-InvertedDataInput

 

34

CML-I

Tx3n

TransmitterInvertedDataInput

 

35

 

GND

Ground

1

36

CML-I

Tx1p

TransmitterNon-InvertedDataInput

 

37

CML-I

Tx1n

TransmitterInvertedDataInput

 

38

 

GND

Ground

1

39

 

GND

Ground

1

40

CML-I

Tx6n

TransmitterInvertedDataInput

 

41

CML-I

Tx6p

TransmitterNon-InvertedDataInput

 

42

 

GND

Ground

1

43

CML-I

Tx8n

TransmitterInvertedDataInput

 

44

CML-I

Tx8p

TransmitterNon-InvertedDataInput

 

45

 

GND

Ground

1

46

 

Reserved

Forfutureuse

3

47

 

VS1

ModuleVendorSpecific1

3

48

 

VccRx1

+3.3VPowerSupplyReceiver

2

49

 

VS2

ModuleVendorSpecific2

3

50

 

VS3

ModuleVendorSpecific3

3

51

 

GND

Ground

1

52

CML-0

Rx7p

ReceiverNon-InvertedDataOutput

 

53

CML-0

Rx7n

ReceiverInvertedDataOutput

 

54

 

GND

Ground

1

55

CML-0

Rx5p

ReceiverNon-InvertedDataOutput

 

56

CML-0

Rx5n

ReceiverInvertedDataOutput

 

57

 

GND

Ground

1

58

 

GND

Ground

1

59

CML-0

Rx6n

ReceiverInvertedDataOutput

 

60

CML-0

Rx6p

ReceiverNon-InvertedDataOutput

 

61

 

GND

Ground

1

62

CML-0

Rx8n

ReceiverInvertedDataOutput

 

63

CML-0

Rx8p

ReceiverNon-InvertedDataOutput

 

64

 

GND

Ground

1

65

 

NC

NotConnect

3

66

 

Reserved

Forfutureuse

3

67

 

VccTx1

+3.3VPowerSupplytransmitter

2

68

 

Vcc2

+3.3VPowerSupply

2

70

 

GND

Ground

1

71

CML-I

Tx7p

TransmitterNon-InvertedDataInput

 

72

CML-I

Tx7n

TransmitterInvertedDataInput

 

73

 

GND

Ground

1

74

CML-I

Tx5p

TransmitterNon-InvertedDataInput

 

75

CML-I

Tx5n

TransmitterInvertedDataInput

 

76

 

GND

Ground

1

Notes:

1.QSFP-DD uses common ground (GND) for all signals and supply (power). All the common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connected theses directly to the host board signal common ground plane.

2.VccRx, VccRx1, Vcc1, Vcc2, VccTx, and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 4. VccRx, VccRx1, Vcc1, Vcc2, VccTx, and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000mA.

3.All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor Specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100pF.


Digital Diagnostic Memory Map

Figure 3 Digital Diagnostic Memory Map


Host Board Power Supply Filtering

Any voltage drop across a filter network on the host is counted against the host DC set point accuracy specification. Inductors with DC Resistance of less than 0.1 Ohm should be used in order to maintain the required voltage at the Host Edge Card Connector. Figure is the suggested transceiver/host interface.

Figure 4 Recommended Host Board Power Supply Filtering


Outline Drawing (mm)

Figure 5 Package Outline


Figure 6 MPO Pinout Diagram and Deion


Host PCB layout recommendation

Figure 7 PCB Layout Recommendation







Applications

● 200GBASE-SR8 Ethernet

● 2×100GBASE-SR4 Ethernet

● Switch & Router Connections

● Data Centers

● Other 200G Interconnect Requirements

Ordering Information
Date Version Description Download
2024-04-26 V1.0 Datasheet_200G QSFP-DD SR8 850nm 100m _LA-OT-200G-SR8_V2.X.pdf
Photo Model Description
Products and Solutions Inquiries