Popular Search
Contact Us

400Gb/s QSFP-DD DR4+ 2km SMF Transceiver

LA-OT-400G-DR4+-2KM
This product is a 400Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for 2km optical communication applications.
Overview
Specifications
Connectivity Solutions
Models
Resources

This product is a 400Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for 2km optical communication applications. The module converts 8 channels of 50Gb/s (PAM4) electrical input data to 4 channels of parallel optical signals, each capable of 100Gb/s operation for an aggregate data rate of 400Gb/s. Reversely, on the receiver side, the module converts 4 channels of parallel optical signals of 100Gb/s each channel for an aggregate data rate of 400Gb/s into 8 channels of 50Gb/s (PAM4) electrical output data.


An optical fiber cable with an MTP/MPO-12 connector can be plugged into the QSFP-DD DR4 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through a QSFP-DD MSA-compliant edge type connector.
The product is designed with form factor, optical/electrical connection, and digital diagnostic interface according to the QSFP-DD Multi-Source Agreement (MSA) Type 2. It has been designed to meet the harshest external operating conditions including temperature, humidity, and EMI interference.


Functional Description
The module incorporates 4 parallel channels on 1310nm center wavelength, operating at 100G per channel. The transmitter path incorporates a quad channel EML driver together with 4 parallel EMLs. On the receiver path, a PD array relates to a quad channel TIA to convert the parallel 400Gb/s optical input into 4 channels of parallel 100Gb/s (PAM4) electrical signals. A DSP basis gearbox is used to convert 8 channels of 25GBaud PAM4 signals into 4 channels of 50GBaud PAM4 signals and an 8-channel retimer and FEC block are integrated in this DSP. The electrical interface is compliant with IEEE 802.3bs and QSFP-DD MSA in the transmitting and receiving directions, and the optical interface is compliant to QSFP-DD MSA with MPO-12 connector. A single +3.3V power supply is required to power up this product. All the power supply pins are internally connected and should be applied concurrently. As per MSA specifications the module offers seven low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, InitMode, ModPrsL and IntL. Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.


Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the memory map.


The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot ion) the module should post this completion of reset interrupt without requiring a reset. Initialize Mode (InitMode) is an input signal. It is pulled up to Vcc in the QSFP-DD module. The InitMode signal allows the host to define whether the QSFP-DD module will initialize under host software control (InitMode asserted High) or module hardware control (InitMode deasserted Low). Under host software control, the module shall remain in Low Power Mode until software enables the transition to High Power Mode, as defined in the QSFP-DD Management Interface Specification. Under hardware control (InitMode de-asserted Low), the module may immediately transition to High Power Mode after the management interface is initialized. The host shall not change the state of this signal while the module is present. In legacy QSFP applications, this signal is named LPMode. See SFF-8679 for LPMode signal deion.


Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is ed into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a “Low” state.


Interrupt (IntL) is an output pin. “Low” indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.


Features
● QSFP-DD MSA compliant
● Parallel 4 Optical Lanes
● 100G Lambda MSA 400G-DR4 Specification compliant
● Up to 2km transmission on single mode fiber (SMF) with FEC
● Operating case temperature: 0 to 70°C
● 8x53.125Gb/s electrical interface (400GAUI-8)
● Data Rate 106.25Gbps (PAM4) per channel.
● Maximum power consumption 12W
● MPO-12 connector
● RoHS compliant

Transceiver Block Diagram

Transceiver Block Diagram of 400Gb/s QSFP-DD DR4+ 2km SMF Transceiver

Figure 1. Transceiver Block Diagram


Pin Assignment and Description

The electrical pinout of the QSFP-DD module is shown in Figure 2 below.

Pin Assignment and Description of 400Gb/s QSFP-DD DR4+ 2km SMF Transceiver

Figure 2. MSA Compliant Connector


Pin Definition

Pin #

Logic

Symbol

Deion

Plug Sequence

Notes

1


GND

Ground

1B

1

2

CML-I

Tx2n

Transmitter Inverted Data Input

3B


3

CML-I

Tx2p

Transmitter Non-Inverted Data Input

3B


4


GND

Ground

1B

1

5

CML-I

Tx4n

Transmitter Inverted Data Input

3B


6

CML-I

Tx4p

Transmitter Non-Inverted Data Input

3B


7


GND

Ground

1B

1

8

LVTTL-I

ModSelL

Module Select

3B


9

LVTTL-I

ResetL

Module Reset

3B


10


VccRx

+3.3V Power Supply Receiver

2B

2

11

LVCMOS-I/O

SCL

2-wire serial interface clock

3B


12

LVCMOS-I/O

SDA

2-wire serial interface data

3B


13


GND

Ground

1B

1

14

CML-O

Rx3p

Receiver Non-Inverted Data Output

3B


15

CML-O

Rx3n

Receiver Inverted Data Output

3B


16

GND

Ground

1B


1

17

CML-O

Rx1p

Receiver Non-Inverted Data Output

3B


18

CML-O

Rx1n

Receiver Inverted Data Output

3B


19


GND

Ground

1B

1

20


GND

Ground

1B

1

21

CML-O

Rx2n

Receiver Inverted Data Output

3B


22

CML-O

Rx2p

Receiver Non-Inverted Data Output

3B


23


GND

Ground

1B

1

24

CML-O

Rx4n

Receiver Inverted Data Output

3B


25

CML-O

Rx4p

Receiver Non-Inverted Data Output

3B


26


GND

Ground

1B

1

27

LVTTL-O

ModPrsL

Module Present

3B


28

LVTTL-O

IntL

Interrupt

3B


29


VccTx

+3.3V Power supply transmitter

2B

2

30


Vcc1

+3.3V Power supply

2B

2

31

LVTTL-I

InitMode

Initialization mode; In legacy QSFP

applications, the InitMode pad is called LPMODE

3B


32


GND

Ground

1B

1

33

CML-I

Tx3p

Transmitter Non-Inverted Data Input

3B


34

CML-I

Tx3n

Transmitter Inverted Data Input

3B


35


GND

Ground

1B

1

36

CML-I

Tx1p

Transmitter Non-Inverted Data Input

3B


37

CML-I

Tx1n

Transmitter Inverted Data Input

3B


38


GND

Ground

1B

1

39


GND

Ground

1A

1

40

CML-I

Tx6n

Transmitter Inverted Data Input

3A


41

CML-I

Tx6p

Transmitter Non-Inverted Data Input

3A


42


GND

Ground

1A

1

43

CML-I

Tx8n

Transmitter Inverted Data Input

3A


44

CML-I

Tx8p

Transmitter Non-Inverted Data Input

3A


45


GND

Ground

1A

1

46


Reserved

For future use

3A

3

47


VS1

Module Vendor Specific 1

3A

3

48


VccRx1

3.3V Power Supply

2A

2

49


VS2

Module Vendor Specific 2

3A

3

50


VS3

Module Vendor Specific 3

3A

3

51


GND

Ground

1A

1

52

CML-O

Rx7p

Receiver Non-Inverted Data Output

3A


53

CML-O

Rx7n

Receiver Inverted Data Output

3A


54


GND

Ground

1A

1

55

CML-O

Rx5p

Receiver Non-Inverted Data Output

3A


56

CML-O

Rx5n

Receiver Inverted Data Output

3A


57


GND

Ground

1A

1

58


GND

Ground

1A

1

59

CML-O

Rx6n

Receiver Inverted Data Output

3A


60

CML-O

Rx6p

Receiver Non-Inverted Data Output

3A


61


GND

Ground

1A

1

62

CML-O

Rx8n

Receiver Inverted Data Output

3A


63

CML-O

Rx8p

Receiver Non-Inverted Data Output

3A


64


GND

Ground

1A

1

65


NC

No Connect

3A

3

66


Reserved

For future use

3A

3

67


VccTx1

3.3V Power Supply

2A

2

68


Vcc2

3.3V Power Supply

2A

2

69


Reserved

For Future Use

3A

3

70


GND

Ground

1A

1

71

CML-I

Tx7p

Transmitter Non-Inverted Data Input

3A


72

CML-I

Tx7n

Transmitter Inverted Data Input

3A


73


GND

Ground

1A

1

74

CML-I

Tx5p

Transmitter Non-Inverted Data Input

3A


75

CML-I

Tx5n

Transmitter Inverted Data Input

3A


76


GND

Ground

1A

1


Recommended Power Supply Filter

Recommended Power Supply Filter of 400Gb/s QSFP-DD DR4+ 2km SMF Transceiver

Figure 3. Recommended Power Supply Filter


Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter

Symbol

Min

Max

Units

Notes

Storage 

Temperature

TS

-40

85

°C


Operating 

Case 

Temperature

TOP

0

70

°C


Power 

Supply 

Voltage

VCC

-0.5

3.6

V


Relative 

Humidity 

(non-condensation)

RH

0

85

%


Damage 

Threshold, 

each Lane

THd

5.5


dBm



Recommended Operating Conditions and Power Supply Requirements

Parameter

Symbol

Min

Typical

Max

Units

Notes

Operating 

Case 

Temperature

TOP

0


70

°C


Power

Supply 

Voltage

VCC

3.135

3.3

3.465

V


Data Rate, 

each Lane



26.5625


GBd

PAM4

Data Rate 

Accuracy


-100


100

ppm


Pre-FEC Bit 

Error Ratio




2.4x10-4



Post-FEC

 Bit Error Ratio




1x10-12


1

Link Distance

D

0.002


2

km

2


Notes:

1. FEC provided by host system.

2. FEC required on host system to support maximum distance.


Electrical Characteristics

The following electrical acteristics are defined over the Recommended Operating Environment unless otherwise specified.


Parameter

Test Point

Min

Typical

Max

Units

Notes

Power Consumption




12

W


Supply Current

Icc



3.64

A


Transmitter

(each Lane)

Signaling Rate, 

each Lane

TP1

26.5625 ± 100 ppm

GBd


Differential 

pk-pk Input 

Voltage Tolerance

TP1a

900



mVpp

1

Differential 

Termination

 Mismatch

TP1



10

%


Differential Input 

Return Loss

TP1

IEEE 802.3-2015

Equation (83E-5)



dB


Differential to    
Common Mode 

Input Return Loss

TP1

IEEE 802.3-2015

Equation (83E-6)



dB


Module Stressed 

Input Test

TP1a

See IEEE 802.3bs 120E.3.4.1


2

Single-ended
 Voltage 

Tolerance 

Range (Min)

TP1a

-0.4 to 3.3

V


DC Common 

Mode Input

 Voltage

TP1

-350


2850

mV

3

Receiver 

(each Lane)

Signaling Rate,

 each lane

TP4

26.5625 ± 100 ppm

GBd


Differential 

Peak-to-Peak

Output Voltage

TP4



900

mVpp


AC Common 

Mode Output

Voltage, RMS

TP4



17.5

mV


Differential 

Termination 

Mismatch

TP4



10

%


Differential 

Output 

Return Loss

TP4

IEEE 802.3-2015

Equation (83E-2)





Common to 

Differential 

Mode Conversion 

Return Loss

TP4

IEEE 802.3-2015

Equation (83E-3)





Transition Time, 

20% to 80%

TP4

9.5



ps


Nearend Eye 

Symmetry Mask 

Width (ESMW)

TP4


0.265


UI


Near-end 

Eye Height, 

Differential

TP4

70



mV


Far-end 

Eye Symmetry 

Mask Width

 (ESMW)

TP4


0.2


UI


Far-end

Eye Height, 

Differential

TP4

30



mV


Far-end

Pre-cursor

 ISI Ratio

TP4

-4.5


2.5

%


Common Mode 

Output Voltage 

(Vcm)

TP4

-350


2850

mV

3


Notes:

1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.

2. Meets BER specified in IEEE 802.3bs 120E.1.1.

3.DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.


Optical Characteristics

Parameter

Symbol

Min

Typical

Max

Units

Notes

Center Wavelength

λc

1304.5

1310

1317.5

nm


Transmitter

Data Rate, each Lane


53.125 ± 100 ppm

GBd


Modulation Format


PAM4



Side-mode 

Suppression Ratio

SMSR

30



dB


Average Launch 

Power, each Lane

PAVG

-2.4


4

dBm

1

Outer Optical 

Modulation 

Amplitude (OMAouter), 

each Lane

POMA

-0.2


4.2

dBm

2

Launch Power in 

OMAouter minus 

TDECQ, each Lane

for ER ≥ 4.5dB

for ER < 4.5dB


-1.6

-1.5



dB


Transmitter and 

Dispersion Eye 

Closure for PAM4, 

each Lane

TDECQ



3.4

dB


TDECQ – 10*log10(Ceq), 

each Lane




3.4

dB

3

Extinction Ratio

ER

3.5



dB


Difference in 

Launch Power 

between any 

Two Lanes (OMAouter)




4

dB


RIN17.1OMA

RIN



-136

dB/Hz


Optical Return 

Loss Tolerance

TOL



17.1

dB


Transmitter Reflectance

RT



-26

dB


Transmitter 

Transition Time




17

ps


Average Launch 

Power of OFF 

Transmitter, each Lane

Poff



-15

dBm


Receiver

Data Rate, 

each Lane


53.125 ± 100 ppm

GBd


Modulation Format


PAM4



Damage Threshold, 

each Lane

THd

5.5



dBm

4

Average Receive 

Power, each Lane


-6.4


4.5

dBm

5

Receive Power 

(OMAouter), 

each Lane




4.7

dBm


Receiver Sensitivity 

(OMAouter), 

each Lane

SEN



Equation (1)

dBm

6

Stressed Receiver 

Sensitivity (OMAouter), 

each Lane

SRS



-2.5

dBm

7

Receiver Reflectance

RR



-26

dB


LOS Assert

LOSA

-15



dBm


LOS De-assert

LOSD



-9.4

dBm


LOS Hysteresis

LOSH

0.5



dB


Stressed Conditions for Stress Receiver Sensitivity (Note 8)

Stressed Eye 

Closure for PAM4

(SECQ), Lane 

under Test



3.4


dB


SECQ – 10*log10(Ceq), 

Lane under Test




3.4

dB


OMAouter of 

each Aggressor Lane



4.7


dBm



Notes:

1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

2. Even if the TDECQ < 1.4 dB for an extinction ratio of ≥ 4.5 dB or TDECQ < 1.3 dB for an extinction ratio of < 4.5 dB, the OMAouter (min) must exceed the minimum value specified here.

3. Ceq is a coefficient defined in IEEE Std 802.3-2018 clause 121.8.5.3 which accounts for reference equalizer noise enhancement.

4. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

5. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.

6. Receiver sensitivity (OMAouter) is informative and is defined for a transmitter with a value of SECQ up to 3.4dB. Receiver sensitivity should meet Equation (1), which is illustrated in Figure 4.


Where:

RS is the receiver sensitivity, and

SECQ is the SECQ of the transmitter used to measure the receiver sensitivity.

7. Measured with conformance test signal at TP3 for the BER equal to 2.4x10-4.

8. These test conditions are for measuring stressed receiver sensitivity. They are not acteristics of the receiver.

Illustration of Receiver Sensitivity Mask for 400G-DR4+


Figure 4. Illustration of Receiver Sensitivity Mask for 400G-DR4+


Digital Diagnostic Functions

The following digital diagnostic acteristics are defined over the normal operating conditions unless otherwise specified.


Parameter

Symbol

Min

Max

Units

Notes

Temperature Monitor 

Absolute Error

DMI_Temp

-3

3

degC

Over operating temperature range

Supply Voltage 

Monitor Absolute Error

DMI _VCC

-0.1

0.1

V

Over full operating range

Channel RX Power 

Monitor Absolute Error

DMI_RX_Ch

-2

2

dB

1

Channel Bias 

Current Monitor

DMI_Ibias_Ch

-10%

10%

mA


Channel TX 

Power Monitor 

Absolute Error

DMI_TX_Ch

-2

2

dB

1


Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.


Outline Drawing (mm)

Outline Drawing (mm) of 400Gb/s QSFP-DD DR4+ 2km SMF Transceiver


ESD

This transceiver is specified as ESD threshold 1kV for high-speed data pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.


Laser Safety

This is a Class 1 Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Date Version Description Download
2025-03-17 Datasheet_400G QSFP-DD DR4+ 2km MPO_LA-OT-400G-DR4-2KM_V2.X
Lanao Communication Technology Limited.
Products and Solutions Inquiries