

200Gb/s QSFP-DD ER4 40km Transceiver

LA-OT-200G-ER4

Description

This product is a 200Gb/s Quad Small Form Factor Pluggable-double density (QSFP-DD) optical module designed for optical communication applications. The module converts 8 channels of 25Gb/s (NRZ) electrical input data to 4 channels of LAN-WDM optical signals, and multiplexes them into a single channel for 200Gb/s(PMA4) optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 200Gb/s(PMA4) optical input into 4 channels of WDM optical signals, and converts them to 8 channels of 25Gb/s (NRZ) electrical output data. The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309.14 nm as members of the LAN WDM wavelength grid defined in IEEE802.3ba. It contains a duplex LC connector for the optical interface and a 76-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module. It can support up to 30km with 200G FEC and 40km with built-in PFEC. The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP-DD Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

Features

- QSFP-DD MSA compliant
- 4 LWDM lanes MUX/DEMUX design
- Up to 40km transmission on single mode fiber (SMF) with built-in PFEC
- Operating case temperature: 0 to 70oC
- Maximum power consumption 12W
- Duplex LC connector
- RoHS compliant

Applications

- 5G Network
- 200G Ethernet
- Enterprise networking

Transceiver Block Diagram

Figure 1. Transceiver Block Diagram

Pin Assignment and Description

The electrical pinout of the QSFP-DD module is shown in Figure 2 below.

Figure 2. MSA Compliant Connector

www.lanaotek.com 2

Pin Definition

Pin	Logic	Logic Symbol Description		Plug Sequence	Notes	
1		GND	Ground	1B	1	
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B		
3	CML-I	Тх2р	Transmitter Non-Inverted Data Input	3B		
4		GND	Ground	1B	1	
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B		
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input	3B		
7		GND	Ground	1B	1	
8	LVTTL-I	ModSelL	Module Select	3B		
9	LVTTL-I	ResetL	Module Reset	3B		
10		VccRx	+3.3V Power Supply Receiver	2B	2	
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3B		
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B		
13		GND	Ground	1B	1	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B		
15	CML-O	Rx3n	Receiver Inverted Data Output	3B		
16	GND	Ground	1B		1	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B		
18	CML-O	Rx1n	Receiver Inverted Data Output	3B		
19		GND	Ground	1B	1	
20		GND	Ground	1B	1	
21	CML-O	Rx2n	Receiver Inverted Data Output	3B		
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B		
23		GND	Ground	1B	1	
24	CML-O	Rx4n	Receiver Inverted Data Output	3B		
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B		
26		GND	Ground	1B	1	
27	LVTTL-O	ModPrsL	Module Present	3B		
28	LVTTL-O	IntL	Interrupt	3B		
29		VccTx	+3.3V Power supply transmitter	2B	2	
30		Vcc1	+3.3V Power supply	2B	2	
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3B		
32		GND	Ground	1B	1	
33	CML-I	Тх3р	Transmitter Non-Inverted DataInput	3B		
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B		
35		GND	Ground	1B	1	
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B		

3

37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тх6р	Transmitter Non-Inverted Data	3A	
			Input		
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Тх8р	Transmitter Non-Inverted Data	3A	
			Input		
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data	3A	
			Output		
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data	3A	
			Output		
56	CML-O	Rx5n	Receiver Inverted Data Output	3A	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-O	Rx6n	Receiver Inverted Data Output	3A	
60	CML-O	Rx6p	Receiver Non-Inverted Data	3A	
			Output		
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Inverted Data Output	3A	

4

63	CML-O	Rx8p	Receiver Non-Inverted Data	3A	
			Output		
64		GND	Ground	1A	1
65		NC	No Connect	3A	3
66		Reserved	For future use	3A	3
67		VccTx1	3.3V Power Supply	2A	2
68		Vcc2	3.3V Power Supply	2A	2
69		Reserved	For Future Use	3A	3
70		GND	Ground	1A	1
71	CML-I	Тх7р	Transmitter Non-Inverted	3A	
			DataInput		
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Тх5р	Transmitter Non-Inverted	3A	
			DataInput		
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1

Recommended Power Supply Filter

Figure 3. Recommended Power Supply Filter

5

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratingsmight cause permanent damage to this module.

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	TS	-40	85	degC	
Operating Case Temperature	ТОР	0	70	degC	
Power Supply Voltage	VCC	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Damage Threshold, each Lane	THd	-5.0		dBm	

Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Units	Notes
Operating Case Temperature	ТОР	0		70	degC	
Power Supply Voltage	VCC	3.135	3.3	3.465	V	
Data Rate, each Lane			26.5625		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		1
Link Distance	D	0.002		30	km	2
Link Distance	D	0.002		40	Km	3

Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.
- 3. Built-in PFEC is required to support up to $40\mbox{km}$

Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Test Point	Min	Typical	Max	Units	Notes
Power Consumption				12	W	
Supply Current	Icc			3.64	Α	
	Transı	mitter (each Lan	e)			
Signaling Rate, each Lane	TP1	26.562	25 ± 100 ppm	1	GBd	
Differential pk-pk Input Voltage Tolerance	TP1a	900			mVpp	1
Differential Termination Mismatch	TP1			10	%	
Differential Input Return Loss	TP1	IEEE 802.3- 2015 Equation (83E-5)			dB	
Differential to Common Mode Input Return Loss	TP1	IEEE 802.3- 2015 Equation (83E-6)			dB	
Module Stressed Input Test	TP1a	See IEEE 802.3bs 120E.3.4.1				2
Single-ended Voltage Tolerance Range (Min)	TP1a		-0.4 to 3.3		V	
DC Common Mode Input Voltage	TP1	-350				2850
	Rece	eiver (each Lane))			
Signaling Rate, each lane	TP4	26.562	25 ± 100 ppm	1	GBd	
Differential Peak-to-Peak Output Voltage	TP4					900
AC Common Mode Output Voltage, RMS	TP4					17.5
Differential Termination Mismatch	TP4					10

		IEEE 802.3-		
Differential Output ReturnLoss	TP4	2015		
		Equation		
		(83E-2)		
Common to Differential		IEEE 802.3-		
Mode Conversion ReturnLoss	TP4	2015		
ivioue conversion Returnloss		Equation		
		(83E-3)		
Transition Time, 20% to 80%	TP4	9.5		
Near-end Eye Symmetry Mask Width (ESMW)	TP4		0.265	
Near-end Eye Height, Differential	TP4	70		
Far-end Eye Symmetry Mask Width (ESMW)	TP4		0.2	
Far-end Eye Height, Differential	TP4	30		
Far-end Pre-cursor ISI Ratio	TP4	-4.5		2.5
Common Mode Output Voltage (Vcm)	TP4	-350		2850
-				

Notes:

- 1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 2. Meets BER specified in IEEE 802.3bs 120E.1.1.
- 3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Units	Notes
	LO	1294.53	1295.56	1296.59	nm	
Wavelength Assignment	L1	1299.02	1300.05	1301.09	nm	
	L2	1303.54	1304.58	1305.63	nm	
	L3	1308.09	1309.14	1310.19	nm	
	Tra	nsmitter	L			L
Data Rate, each Lane		53	.125 ± 100 p _l	om	GBd	
Modulation Format			PAM4			
Side-mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	PT			14.7	dBm	
Average Launch Power, each Lane	PAVG	-0.1		5.6	dBm	
Outer Optical Modulation	РОМА	3.4		6.4	dBm	
Amplitude (OMAouter), each Lane	TOWA	3.4		0.4	abiii	
Launch Power in OMAouter minus		3			dB	
TDECQ, each Lane					ub.	
Transmitter and Dispersion Eye	TDECQ			3.2	dB	
Closure for PAM4, each Lane						
Extinction Ratio	ER	6			dB	
Difference in Launch Power						
between any Two Lanes				4	dB	
(OMA _{outer})						
RIN15.10MA	RIN	-132			dB/Hz	
Optical Return Loss Tolerance	TOL			15.1	dB	
Transmitter Reflectance	RŢ			-26	dB	
Average Launch Power of OFF	Poff			-30	dBm	
Transmitter, each Lane					25	
	R	eceiver				
Data Rate, each Lane		53.125 ± 100 ppm			GBd	
Modulation Format			PAM4			

www.lanaotek.com 9

Sensitivity, each lane	Sen1	MAX (-11.1, SECQ-12.5)			dBm	For 30km			
Sensitivity, each lane	Sen2	MAX (-14.1, SECQ-15.5)			dBm	For 40km			
Stressed Conditions for Stress Receiver Sensitivity (Note 8)									
Stressed Eye Closure for PAM4 (SECQ), Lane under Test			3.4		dB				
SECQ – 10*log10(Ceq), Lane underTest					dB				
OMA _{outer} of each Aggressor Lane			-8		dBm	_			

Digital Diagnostic Functions

Parameter	Symbol	Min	Max	Units	Notes
Temperature Monitor					Over operating
Absolute Error	DMI_Temp	-3	3	degC	temperature range
Supply Voltage Monitor	DMI_VCC	-0.1	0.1	V	Over full operating
Absolute Error					range
Channel RX Power Monitor					
Absolute Error	DMI_RX_Ch	-2	2	dB	1
Channel Bias Current	DMI_lbias_Ch	-10%	10%	mA	
Monitor					
Channel TX Power Monitor	DMI_TX_Ch	-2	2	dB	1
Absolute Error					

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Notes:

4. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Outline Drawing (mm)

https://www.lanaotek.com

Specifications & design are subject to change without prior notice.

For more details, please email to info@lanaotek.com. Copyright©2024 lanaotek.com All Rights Reserved